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Introduction of SemiT-SAM
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- VIiT-Tiny derived from MobileSAM
- Generating multi-scales features by simple feature pyramid module (from ViTDet)
- Initializing query in the decoder using a query initialization unit.
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Unlabeled Data

Semi-Supervised Training
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Teacher pre-training: The teacher model, parameterized by 0t, is exclusively trained on annotated data.

Enhanced burn-in process: The student model, parameterized by 0s, is trained on both labeled and unlabeled data
using pseudo-labels generated by the teacher model in the first pre-training stage. The teacher model is frozen.
The student continues to be trained on both labeled and unlabeled data as before. The teacher model is updated
using an exponential moving average (EMA) of the student’s weights.
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. Loss Function

During the training phase, the total loss consists of the supervised and unsupervised losses, which share the same loss
function, defined as follows:

Ctotal — Esup + A'u,'n,.sup'C'z.t/n,.s'z.t,p

The unsupervised loss weight A, is 2 in our experiments. The loss function is structured as a weighted sum of five
loss components:

Esup/unsup — ALlJCLl + )\gz'ouﬁgz'ou + )\focalﬁfocal + )\ceﬁce + ADz'celCDz'ce

. Datasets for Building the Foundation Model

We carefully collected a large-scale dataset, TSI15k, from several open-sourced datasets for training the teeth
segmentation foundation model. The dataset is available at: https://huggingface.co/datasets/Bryceee/ T1SI15k-Dataset

Our code and checkpoints of teeth foundation model are available at: https://github.com/isbrycee/SemiTNet (accessed
on 4 August 2024)



https://github.com/isbrycee/SemiTNet
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Training protocols



{wc.r ,

&, ﬂKUDentlstry
G ERABTEER

. Training protocols

1 Fine-tuning our teeth segmentation foundation model using the provided 30 labeled data in this challenge.

This step was necessary to align the category space because we had originally defined 32 classes in our teeth segmentation
foundation model, whereas this challenge defined 52 classes.

2. The unlabeled data were used for semi-supervised training.

Network initialization Teeth Segmentation Foundation Model

Batch size 4

input image size 1024x1024

Total iterations 30000

Optimizer AdamW

Initial learning rate (Ir) le-4

Lr decay schedule StepLR (decreased by 0.1 after 25k and 28k iters)
Training time 14 hours

Number of model parameters 21.6 M
Number of flops 107.3 G

Number of queries 100
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Results
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With the help of unlabeled data and semi-supervised training strategy, the performance could be further improved.

All metrics, with the exception of the instance-level Dice, have shown improvement, that is, the enhancements resulted
in increases of 1.01% (image-level Dice), 1.28% (image-level 1oU), 1.12% (image- level NSD), 0.86% (instance-level

loU), 1.10% (instance-level NSD), and 2.20% IA.

We believe that since the teeth segmentation foundation model already provides a strong baseline for tooth instance
segmentation capabilities, the improvement brought by unlabeled data is limited.

image-level

instance-level

Method

Dice (%) IoU (%) NSD (%)|Dice (%) IoU (%) NSD (%) IA (%)
SemiT-SAM 86.89 77.63 90.52 84.93 67.59 76.85  76.00
SemiT-SAM nlabeled data| 87.90 78.91 91.60 83.88 68.45 T77.95 78.20
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Successful cases Fallure cases

(a) Before semi-supervised learning (b) After semi-supervised learning (a) Before semi-supervised learning (b) After semi-supervised learning
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